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Multiple short-term memories in coupled weakly nonlinear map lattices

Antônio M. Batista,1,2 Ricardo L. Viana,2 and Se´rgio R. Lopes2
1Departamento de Matema´tica, Universidade Estadual de Ponta Grossa, 84010-330, Ponta Grossa, PR, Brazil

2Departamento de Fı´sica, Universidade Federal do Parana´, 81531-990, Curitiba, PR, Brazil
~Received 25 August 1999!

We investigate short-time memory storage in coupled map lattices with a periodic external input. In the case
of linear coupled maps, the transient length necessary to achieve permanent memory is studied. We present
numerical evidence that coupled weakly nonlinear maps are able to store multiple short-time memories, and
use this fact to encode symbols in a matrix of pixels, using suitable control laws.

PACS number~s!: 05.45.Ra, 87.18.Sn
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An intensively studied model for neural networks is t
Hopfield model@1#, which assumes a network of neurons
the form of an Ising spin system, with a symmetric conn
tivity matrix describing synaptic activity. A common featu
of this kind of model is that the state variable is discrete a
binary, assuming only two possible states: active or idle@2#.
Since binary neurons are bound to carry only a limit
amount of information, the memory capacity of the netwo
is proportional to the number of neurons, or network size
more information could be stored in each network unit
could design smaller networks, at least in principle, wh
retaining the overall memory capacity. The use of continu
state variables as network units is thus very appealing, s
it allows the storage of any real number. Coupled map
tices could provide the conditions for their use as networ
in which the units are discrete time maps with a continuo
state variable@3,4#. A pioneering study of coupled map la
tices as neural network models was done by Nozawa@5#,
who considered a discretized version of a Hopfield mode

This possibility was recently explored to explain results
a charge density wave~CDW! experiment in NbSe3 @6#, in
which the memory encoding manifested itself as a synch
nization of the responses to a periodic train of driving el
tric pulses in a crystal. A coupled map lattice with extern
periodic input was proposed to explain the existence
short-term memory formation. ‘‘Short term’’ means that t
lattice memorizes a sequence of inputs, provided they c
tinue to be applied to the system. After the external in
ceases, the lattice loses almost all information.

In this paper we explore some of the consequences of
coupled lattice map used in Ref.@6# in the modeling of the
above mentioned CDW experiment. In particular, we anal
the influence of some coupled map parameters on the d
tion of the transient necessary to achieve memory stor
We also design a coupled lattice map for storage patterns
can be used to encode a given piece of information a
symbol in a pixel matrix. The rule for storing a given s
quence of pixels is translated into an analytical formula
some control parameter, such as the input amplitude or
coupling strength.

Let xn be the continuous dynamical neuron state at d
crete timen50,1,2, . . . . A unidimensional lattice is formed
with these maps, where the variable related to thei th site
( i 51,2,3, . . . ,N) at timen is represented byxn

( i ) . Each unit
has an evolution described by a mapx° f (x), and the cou-
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pling is with the nearest neighbors only@3#. Note that a mod-
eling based on the usual neural network architecture wo
need a global rather than a local coupling@5#. The model to
be treated in this work is

xn11
( i ) 5 f ~xn

( i )!1 int$k@ f ~xn
( i 21)!22 f ~xn

( i )!1 f ~xn
( i 11)!#

2~11An!%, ~1!

where k is the coupling strength and int$z% is the largest
integer less than or equal toz. An represents an external inpu
signal that is periodically applied to lattice sites, and it co
stitutes the pattern that the network is supposed to memo
It could be, for example, an input cycle of period 2:A1
59,A2510,A359,A4510, . . . .

This coupled lattice map model describes the dynamic
an overdamped chain ofN particles in a deep periodic po
tential, with nearest neighbors connected by springs w
elastic constantk, and subjected to external force kicks
amplitude 11An . This is related to the dynamics of slidin
charge-density waves@7#. In Ref. @6# a simple linear map
f (x)5x was used, but here we will also analyze the infl
ence of a small nonlinearity, in the formf (x)5x1rx2,
wherer !1.

Starting from an initial configuration for the network uni
x0

( i ) , with i 51,2, . . . ,N, the system evolves in time by
sequence of patterns that may or may not settle down in
stable configuration, or attractor. The memorized pattern
lowing the ‘‘learning input’’ An may be recovered from the
lattice pattern by using a ‘‘curvature’’ variablecn

( i ) , defined
~for site i and timen) as

cn
( i )5k@ f ~xn

( i 21)!22 f ~xn
( i )!1 f ~xn

( i 11)!#, ~2!

such that memory storage is characterized by clustering
curvature variables with the same value. In histograms of
fractional part ofcn

( i ) , these memories show up as sharp f
quency peaks@6#. However, these memories are somewh
different from those displayed by a Hopfield-type neural n
work. In the latter case, a given configuration is learned a
stored for long times without further inputs, because the c
figuration minimizes some energy functional. Here we d
with memories that persist only if the external input is bei
continuously applied.
5990 ©2000 The American Physical Society
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As an example~Fig. 1!, we have computed the curvatu
variables forN510 linear maps (r 50) in a lattice with
mixed boundary conditions~one end nailed, one end free!
xn

(1)50, xn
(N21)5xn

(N) and the two-cycle inputA159, A2

510, etc. It turns out that the inputAn59 has a transien
memory, whereas the other (An510) is a fixed point and
persists as long as the input continues to be applied. N
that each effective site~eight out of the ten! eventually at-
tains the same memory value for the curvature variable.

To understand how these memories are formed, we b
by considering the effect of the first pulseA1, which is ap-
plied to all lattice sites. Thus the increment in the state v
ablexn

( i ) is the same for all sites, except for that located at
fixed endxn

(1)50. This causes an increase of the curvature
the vicinity of the fixed end. It will further increase with tim
until the coupling between the fixed end and the next
becomes large enough to hold the curvature constant.
happens for the other sites toward the free end of the la
until the saturation value is reached, which correspond
the permanent memory.

There is a transient time to achieve this perman
memory. In the example of Fig. 1 it is less than 23104 units
of time, and this value depends on various map and lat
parameters. The dependence of transient memory dura
on the lattice positioni is depicted in Fig. 2 for a large
lattice (N550) with single inputA510. The numerical
curve seems to be well fitted by a fourth-order polynom
whose coefficients depend on the lattice size. Sites close
the fixed end attain permanent memory values faster t
distant ones, because of the mechanism just mentioned.
transient time also depends on the coupling strengthk. Ac-
tually, they were found to be inversely proportional to ea
other, since the lesser the coupling, the weaker its diffus
effect over the lattice, and the more time would be necess
to propagate information. So the memory transient would
considerably higher in this case. Finally, it has been fou
that the transient length increases with the fifth power of
input amplitudeA.

The addition of a small nonlinearity to the isolated ma

FIG. 1. Temporal evolution of the curvature variable for sites
a coupled identity map lattice withN510, k50.01, and a two-
cycle inputA159, A2510. We have used a random initial cond
tion x0

( i ) and mixed boundary conditionsxn
(1)50, xn

(N21)5xn
(N) .

Each curve corresponds to a given site (i 52,3,4, . . . ,9).
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has a significant effect on the capacity for memory stora
For a nonlinearity as tiny asr 51028, it turns out that mul-
tiple memories may be stored, instead of only one~as in the
linear case! ~see Fig. 3!. Extensive numerical testing ha
been done to check that these multiple permanent memo
remain as long as we continue to apply the inputs, in cont
with the single memory typically displayed by linear map
First note that an identity mapf (x)5x has unit slope, and
thus a continuum of fixed points. With a small nonzero no
linearity the map has only one fixed point atx50, and the
iterations wander very close to the 45°-line, allowing a
point to be set out as a memory value influenced by
external kicks. As the nonlinearity term isrx2, its effect for
very smallr is only noticeable for high values ofx, say, 105

or even more. Increasing the nonlinearity causes the cu
ture variable to vanish, since the maps begin to synchron
in phase, presenting the same value ofx for all sites. This
effect begins to occur from the free end of the chain.

f FIG. 2. Duration of the transient for the memorized valuec( i )

510 as a function of the lattice position, for a coupled identity m
lattice with N550, k50.01, A510, and the same initial and
boundary conditions as in Fig. 1.

FIG. 3. Temporal evolution of the curvature variable for sites
a coupled weakly nonlinear map lattice withN510, k50.01, r
51028, A510. We have used a random initial conditionx0

( i ) and
mixed boundary conditionsxn

(1)50, xn
(N21)5xn

(N) . Each curve cor-
responds to a given site (i 52,3,4, . . . ,9).
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Let us consider a specific example to see why multi
short-term memories are found in the weakly nonlinear ca
We begin by writing the curvature variable for the quadra
map as

cn
( i )5k$xn

( i 21)22xn
( i )1xn

( i 11)1r @~xn
( i 21)!2

22~xn
( i )!21~xn

( i 11)!2#%. ~3!

We use a lattice withN56 sites. In the linear case (r 50),
we have the following stationary values for the state va
ables:x(2)5211 000, x(3)5215 000, x(4)5218 000, x(5)

5220 000. Substituting these values into Eq.~3! we can
obtain the stored memoriesc(3)5c(4)510. If we add a small
nonlinearity (r 51028), different stationary values are ob
tained ~by iterating as much as 4 billion times!: x(2)5
29472, x(3)5212 709, x(4)5215 047, x(5)5216 583.
Using Eq.~3!, we have this time not one but two differen
memories:c(3)59.05 andc(4)58.11.

This feature suggests the use of coupled weakly nonlin
maps to store more complex information. We use a seque
of pixels in a 434 tiled display~Fig. 4!, where we assign to
each of the 16 pixels a given interval for the curvature va
able for each site, and superpose all displays~this would
require anN518 lattice!. Each site is related to such a di
play. For a lattice, we superposeN displays, obtaining a
single pattern. A symbol may be stored through a prede
mined sequence of permanent values for the curvature, a
rule to get to this desired pattern. We may use either
input amplitudeA or the coupling strengthk as control pa-
rameters, to design this learning rule.

As an example, consider the pattern shown in Fig. 5

FIG. 4. Graphic 434 matrix for encoding of symbols, wher
each pixel is related to the indicated interval of the curvature v
able.

FIG. 5. Encoding of the letter ‘‘V’’ using the matrix depicted i
Fig. 4, and a coupled weakly nonlinear map lattice withn518, r
51027, A510, and the same initial and boundary conditions as
previous figures.
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may be represented by the following target curvature~note
that this choice is not unique, since we have done a coa
grained partitioning of the interval@0,16#!:

C n
( i )51.5 ~1< i<6!, C n

( i )52.5 ~7< i<9!,

C n
(10)5C n

(11)53.5, ~4!

C n
(12)5C n

(13)54.5, C n
(14)58.5, C n

(15)513.5,

C n
(16)514.5, C n

(17)5C n
(18)515.5.

We use Eq.~3! with the substitutioncn
( i )→C n

( i ) , and allow
the coupling strength to be varied for each site and e
instant (k→kn

( i )). The necessary values ofk( i ) are depicted in
Fig. 6, where the stationary values are shown. We rem
however, that this scheme works only for nonzero values
the target curvaturesC n

( i ) .
As well as varyingk, we find that memory storage is als

possible by changing the input strengthsAn→An
( i ) . We have

used this control scheme to obtain the same target patter
Fig. 5, and the necessary input amplitudes are shown in
7. This turns to be more feasible to implement, from a phy

i-

n

FIG. 6. Lattice profile for the coupling constantk to obtain the
target memorized pattern shown in Fig. 5. This pattern is stable
up to 73106 iterations of the coupled map lattice.

FIG. 7. Lattice profile for the input amplitudeA to obtain the
target memorized pattern shown in Fig. 5. This pattern is stable
up to 73105 iterations of the coupled map lattice.
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FIG. 8. Largest input amplitude necessary
obtain the target memorized pattern shown in F
5, as a function of~a! coupling strengthk and~b!
nonlinearity parameterr.
ch
a

al
e
pl
te
ct
a

.
at
n
o
th

ro
g
t

o
kl

his

sult
ny
y
e
the
get
in

r to
ys-
ose
s a

e-
by

da-

ct.
Pq
cal point of view, than adjusting coupling strengths, whi
are quite difficult to modify. The largest value of the extern
input Amax in order to obtain a given target configurationC n

( i )

depends on both the coupling strengthk and the nonlinearity
parameterr ~Fig. 8!. It is found that the input amplitude
decreases withk in an inverse-square-law fashion. This sc
ing comes from the fact that, for weak coupling, a larg
input is needed to get the same target than a strongly cou
lattice would require. In intermediate cases, the target pat
is determined by the competition between these two effe
lattice diffusion provided by coupling and external perturb
tions represented by the kicks applied to the lattice sites

Summarizing our results, we have explored the fact th
coupled linear map lattice can store an external input sig
as a short-term memory. We have found that the mem
formation has a transient duration that increases with
lattice size and the input amplitude, but it is inversely p
portional to the coupling strength. Thus, for optimal stora
one would need small lattices~but not so small as to preven
information encoding when partitioning!, large coupling
strength, and low signal amplitudes.

The most significant result of this note is the possibility
storage of multiple short-term memories by using a wea
t-
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nonlinear map in each lattice site. As a matter of fact, t
possibility has already been anticipated in Ref.@6#, where the
effect of external noise has also been conjectured. This re
allows us to use coupled map lattices to store virtually a
kind of information. We illustrate this with a matrix displa
of symbols. Thanks to the form of the lattice coupling, w
can choose a given target pattern to memorize and vary
coupling constant or the external input amplitude so as to
the desired result. This works as a kind of control scheme
space and time. Further work is being conducted in orde
improve the application of the present technique to the s
tematic storage of a sequence of symbols, with the purp
of testing the performance of a coupled map lattice a
neural network.
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